Multipliers on Modules Over the Fourier Algebra

نویسنده

  • Donald E. Ramirez
چکیده

Let G be an infinite compact group and G its dual. For 1< p < oom P(G) is a module over 21(G) A(G), the Fourier algebra of G. For 1 < p, q < o0, let Ip q = HomA(G)( P(G), ?'(G)). If G is abelian, then Jll is the space of LP(G)-multipliers. For 1 < p < 2 and p the conjugate index of p, A(G) -1,1 p,p p, p 2, 2 (G). Further, the space ll is the dual of a space called d p a subspace of eo(G). Using a methoa of J. F. Price we observe that U I q, q: I < q < p} NflPI p C=.n0Rq, q: p < q < 2} (where 1 < p < 2). Finally, S11 =10} for 1 < p < q < oo. q, p 1. Modules, over the Fourier algebra. Throughout this paper G will denote an infinite compact group and G its dual (we use the notation from [1]). Throughout, 1 < p, q, r < oo. Given p, the conjugate index will be denoted by p' (i/p + 1/p' = 1). Definition. Let b e eF(G) and so += f for / a trigonometric polynomial on G. We define b by the rule / = (f) where f(x) = /(x-l), x E G. Proposition 1. The map b b from CF (6) to eF(G) extends to an isometry of SP (G) (1 < p < 00) and of E0G) Proof. For f a trigonometric polynomial on G, we have that (/)= ((/)*)= ((/) )* (J/(J)* (see [1, p. 87]). Thus for b E CF(G), oIIlp = IkIlp. El Definition. Let k F, eiwe define E x q Fe CF by the rule x qf) = Oq (0 denotes the inverse Fourier transform of b [1, p. 97]). We note that |kbx ||1 ? | I IR EF(G) (see [1, p. 93]). We define the pairing (s, i/) = Tr(oGr) = (6 * ( /)Y)(e) = fG 7(x)\(x)dmc(x), (k, qi E F(G), Presented to the Society, October 18, 1971; received by the editors November 3, 1971. AMS (MOS) subject classifications (1970). Primary 43A15, 43A22; Secondary 46E30, 46L20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras

In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...

متن کامل

On the Finsler modules over H-algebras

In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.

متن کامل

Multiplication operators on Banach modules over spectrally separable algebras

‎Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module‎. ‎We study the set‎ ‎${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$‎. ‎In the case $mathscr{X}=mathcal{A}$‎, ‎${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$‎. ‎We s...

متن کامل

Bessel multipliers on the tensor product of Hilbert $C^ast-$‎ modules‎

In this paper, we first show that the tensor product of a finite number of standard g-frames (resp. fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of Hilbert $C^ast-$ modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel multipliers and Bessel fusion multipliers in Hilbert $C^ast-$modules. Moreover, we obtain so...

متن کامل

MULTIPLIERS AND THEIR APPLICATIONS IN EARTHQUAKE ENGINEERING

In this paper we shall study the multipliers on Banach algebras and We prove some results concerning Arens regularity and amenability of the Banach algebra M(A) of all multipliers on a given Banach algebra A. We also show that, under special hypotheses, each Jordan multiplier on a Banach algebra without order is a multiplier. Finally, we present some applications of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008